Pseudo-Classes: Very Simple and Lightweight
MockObject-like Classes for Unit-Testing

Geoff Sobering
Isthmus Group
222 State St Suite 300
Madison, WI
001-608-661-1234

geoff.sobering@isthmusgroup.com

ABSTRACT

A simple alternative to MockObjects is presented. Given the
interface of an object required by a class-under-test, a Pseudo-
Class is created implementing all methods such that they
immediately fail. A test-specific sub-class of the Pseudo-Class is
created locally in the test (ex. as an anonymous inner-class in
Java), over-riding only the methods required by the interaction
between the object and the class-under-test for the test-scenario.
Typically, the method implementations are extremely simple (a
few lines, at most), and the number of methods overridden is
small. This mechanism was found adequate for more than 90% of
our unit-tests (in a 1000-class system with over 2000 test
methods, we finally ended up with about four real MockObject
classes and more than 40 Pseudo-Classes).

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Programming

General Terms
Design, Reliability, Verification.

Keywords

Unit-Tests, MockObjects, PseudoObjects, Test-Driven-
Development, TDD, Test-First-Design, TFD
1.INTRODUCTION

During a recent Test-Driven Development (TDD) Project, we
ran into the well-known problem of needing to supply instances of
various classes that the “Class Under Test” required for a specific
test-sequence. We first investigated MockObjects [1] but found
the formalism more complex than most of our tests required. In
particular, we found the separation of the mock-class from the
test-class reduced the clarity of the test. We observed that each
test in a good unit-test suite usually covers only a small portion of
the behavior of the class-under-test. Thus, only simple “stand-in”
implementations are required to support the class-under-test's
interactions.

The major problem was finding a way to explicitly, simply,
and compactly define the exact nature of the interaction between
the class-under-test and its associated classes.

Note that pseudo-classes are not intended as a replacement for full-
blown MockObjects. In some cases with complex interactions between a
class-under-test and its associates we did find that a MockObject (with
it’s verify () method) was the best way to capture/express the intent of

Copyright is held by the Author/Owner(s).
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
ACM 1-58113-833-4/04/0010.

Levi Cook
Isthmus Group
222 State St Suite 300
Madison, WI
001-608-661-1234

levi.cook@isthmusgroup.com

Steve Anderson
Berbee
5200 Research Park Drive
Madison, WI
001-608-298-1117

steve.anderson@berbee.com

a test. However, we did find that there was about a 100:1 ratio of tests
where a pseudo-class was sufficient vs. the need for a real mock.

2IMPLEMENTATION

In keeping with the desire for simplicity and clarity, the
implementation of Pseudo-Classes is nearly trivial. The starting
point is a type-declaration interface (Java™ terminology and
semantics will be used for examples). The example we’ll use here
is a commissioning system for insurance agents. The basic
behavior is that an agent gets a commission for every sale they
make. That commission calculation is different for full-time and
part-time agents.

As always, we start with a test first (JUnit here). In this case
the test is nearly trivial:

public void testFullTime ()

{
CommissionCalculator calculatorUT =
new CommissionCalculator();

Money saleAmount =
new Money ("1000.00");

Money expectedCommissionAmount =
new Money("100.0"™);

Agent fullTimeAgent =
new FullTimePseudoAgent () ;

Money actualCommissionAmount =
calculatorUT.calculateCommission
(saleAmount, fullTimeAgent);

assertEquals (expectedCommissionAmount,
actualCommissionAmount);

The method we are testing is CommissionCalculator.
calculateCommission (). It takes a sale-amount and the
selling-agent as parameters and returns the commission amount.
The sale-amount is easy to supply, since the Money class is a
simple value-type, we can just construct one. The selling-agent is
tougher. In the real system I adapted this example from, the
production Agent implementation is fairly expensive to create,
and requires some state from a data-base. Instead of trying to
manage all thatt we supply an instance of
FullTimePseudoAgent:

private static class FullTimePseudoAgent extends
PseudoAgent
{

public boolean isFullTime() { return true; }
}

The definition is easy to read and understand, and it can live
adjacent to the test-method as well (it could even be defined as an
anonymous inner-class inside the test-method, but in this instance
we thought the test was clearer this way). An important thing to
note is that, for a simple interaction like the one in this test (which
is quite representative of many of the 2000+ tests we wrote), the
complexity of the test-code is independent of the complexity of
the Agent interface; even if Agent has 100 methods on it, we
still need only override one of them for this test.

Agent

~
~
~
~
~

Agentimpl

Pseudt')Agent

FullTimePseudoAgent

Figure 1 -The abstract relationships between the classes.

Now that we’ve seen how a typical test can be simply coded,
and the relationship between classes in our example Agent
hierarchy (figure 1), it’s time to look in a bit more detail and see
how the pseudo-classes are defined.

Our first code example is the Agent interface (note that in a
real system there would probably be many more methods):

public interface Agent
{
public boolean isFullTime();

public Account getAccountFor (AccountType key);

Next, we show the PseudoAgent used as the super-class
for our FullTimePseudoAgent in the test class we defined
on the previous page. This would also be the superclass of all
other pseudos of the Agent interface used anywhere in tests.

public class PseudoAgent implements Agent

{

public boolean isFullTime ()

{

throw new UnimplementedPseudoClassError();

}

public Account getAccountFor (AccountType key)
{
throw new UnimplementedPseudoClassError();
}
}

Note that, the implementation is trivial (in fact, easily
automatable). Every method in the interface is implemented to
immediately throw an uncaught exception unique to the pseudo-
framework.

3.DISCUSSION

The benefits of using pseudo-classes in unit-tests have been
alluded to above. In this section we will describe then in more
detail.

The first benefit is the one shown in the example above. For
a simple “getter-like” interaction between the class-under-test and
its associates, the test values are easy to insert, and the nature of
the interaction is clear. In the example above, for instance, it is
impossible for the calculateCommission () method to call
anything other than isFullTime ()on the supplied Agent
instance (without throwing an exception).

The second situation where pseudo-classes are very helpful is
as “filler arguments” in a test-scenario that requires a parameter
be present (ex. to satisfy the method signature), but where the
scenario has no interaction with the parameter. Previously, this
case was often handled by passing in a null reference. Once one
is familiar with the pseudo-pattern, supplying an instance of the
un-extended pseudo-class is a clear statement that no methods will
be called.

Third, supplying a specifically typed instance for a
dependent object will also catch any “hidden” casting inside the
class-under-test. For example, if one aggressively applies the
“interface segregation principle” [2], then one implementation
class may implement a number of different interfaces. It is not
uncommon for a class to cast an argument from its supplied type
to another one that it “is known” to implement (sometimes in an
attempt to mimic dynamic-typing behavior in a statically-typed
language). The pseudo-class framework addresses this in two
ways. First, since a typical pseudo-class implements only one
type, any cast away from one of its super-types will cause the test
to fail immediately. Second, if such casting is necessary, one can
expose it more clearly in the test by supplying a pseudo-class
instance that explicitly implements all the types it is cast to in the
test-scenario.

Finally, in a test-driven-design (TDD) development
environment, it is common in the early stages of the development
of a new class to require an instance of an existing associated
class. The test-code can first supply an un-extended pseudo-class.
As behavior is added to the class-under-test, the test will fail with
the unique pseudo-class framework exception whenever a new
method on the supplied instance is used. The developer can
quickly implement the required behavior in the pseudo, and
continue work on the new feature.

4.CONCLUSION

We have found the creation of pseudo-classes for many of
the core objects in a medium-sized system (ca. 120,000 lines-of-
code and 1500 classes) helped simplify and clarify many of the
unit-test scenarios. The pseudo-classes were easy to implement,
manage and maintain.

S.REFERENCES

[1] Mackinnon, T., Freeman, S., Craig, P., Endo-Testing: Unit
Testing with Mock Objects, Proc. eXtreme Programming and
Flexible Processes in Software Engineering (2000)

[2] Martin, R., The Interface Segregation Principle, C++ Report
(1996)

